Best Practices, Process

Nathaniel Osgood
MIT 15.879

May 16, 2012

Recall: Process Suggestions

Use discovery of bugs & oversights to find
opportunities to improve Q & A and broader modeling
process

Use peer reviews (& especially inspections) to review
— Preliminary design/Code/Tests

Use tools for version control & documentation &
referential integrity

— Rigorous versioning
— Document linkages between artifacts

Keep careful track of experiments

Strive for ongoing process improvement

Use focused prototypes where appropriate

Perform simple tests to verify functionality

Integrate with others’ work frequently & in small steps

Generate Documentation

:“] AnyLogic University [EDUCATIONAL USE ONLY] - |5 |i|
File Edit “iew Draw Model Tools Help
< Projects £8 l =0 6] Person |6] Person |E] Person |6] Female |6] Male |6] Iain |6] I¥lain Ia Person &4 l MySQLDE. java | 7 =0
H ——
- - nCumulativelnfections ;I Y v 1 L W4
0 nCumulativelnfectionsPrevious ™
contackTracing

~i) ninfectious
5":’.; Events
{‘D Environments
("FO Embedded Objects
{hﬁ analysis Data
[+~ B Presentation
H-E9 Person
€ Testsimulation: Main
2 Calibration: Main
%\ CalibrationMystery: Main
a MonkeCarlo2DHistogram: Main

ChrH2

[5) Save &s...
Rewert

o

Chr+3

Close
Clase Others

[Z problems
Close all

1eTaTB

Kl

MNonTEDeathPreT

F‘otentiaIContact
Receivediotice
Tantoux 1stSkinTest

otent|aI2ndSkJnTestandChnlcaIRewew —

W

Mo&_LatentlyInfectedWithPreviousTreatment A

'

Mo problems

I Diescrip

Collapse All

0k
Copy.
Paste

Deleke

Chrl
il
[
Delete

g Build

2 Run

F7

<7 Export...

Check For Snapshot Carmpatibility

Check Madeal Units

E properties 53 I =) Console|

i’V:E

S—

General

EclipseDebuggingExample - Model

Mamme: | EclipseDebuggingExample |

[ependencies

Descripkion

Package: | abmmodelwithbirthdeath |
File: |C:'I,Usask'l,CIasses'l,158?9 Spring 2012\ExampleModels\EclipseDebuggingExample\EclipseebuggingExample. alp

Time units: | days -

EclipseDebuggingExample - Madel

Selecting Documentation Output
o]

Create Model Documentation

i_reake a document with description of all model elerments and their properties

Document name: | abmmodelwithbirthdeath

Location: | CiiUsersiMateDocuments Browse. ., |

Format: |PDF - Portable Document Format j

Finish I Cancel

Example Documentation

abmmodelwithbirthdeath.pdf - adobe Acrobat Professional

File Edit Wew Document Comments Forms Tools Advanced Window Help

=10l
b

IRk

ey = ey =

| = Sticky Note TextEdits' &- 4B = > OO / e Show -

General

Name Value

Java Package Name

abmmodelwithbirthdeath

File Name C\Usask\Classes\15879 Spring
2012\ExampleModels\EclipseDebuggingExample\EclipseDebuggin
gExample alp

Model Time

Model Time Units

| Day

General

Active Object Class: Main

Startup Code

traceln("Starting simmulation”);
environment deliverToRandom("Infectl");

TriggerDebugger();
Advanced
Auto-create Datasets true
Recurrence 1
Dataset Samples To Keep 100
Make Default View Area false

L[]

Incremental Delivery

Best Advice: Start Simple!

It is easy to get lost in these models

Focus on building up the models incrementally, as
insights arise

Innovate off of simple examples
Avoid the temptation of the “big bang” project

Some Benefits of Incremental Delivery

Morale: Get products soon
Discover problems sooner

~lexibility to change direction in way that reflects new
<nowledge & understanding

Easier to estimate time required for next deliverable

Can better handle slower progress or unexpected
schedule limits: At least get some value from dev.

Get more insight about what to do by tangibly working
with a produced artifact

Can avoid “gilding the lily” by heading off unnecessary
development

Continuous Integration

Continuous Integration

* Continuous integration involves ongoing
integration of different people’s contributions
to an underlying artifact
— This is in contrast to the traditional “big bang”

approach of integrating all elements at once

* Continuous integration is conceptually
different from but helps support incremental
delivery

Continuous Integration: Advantages

B Cooperation: Greatly reduces integration headaches
B Reduced likelihood of merge conflicts
B Easier, less wasteful to fix if conflict occurs
B Allows bigger teams to function nimbly

B Quicker identification of problematic modifications & bugs

B Helps identify state of project via smoke tests, availability of
executable

B Improved estimation, flexibility for shipping

B Feedback: Reduces need for status reports, polling
B Automated build validation test (BVT) scripts

B I[mproves team morale
B Helps force fixing bugs before continuing

Managing Process Complexity

Process Complexity: A Barrier to Quality
ABM Modeling

Medium+ scale ABM projects generate a large # &
diversity & versions of related artefacts

Careful coordination of these artefacts is important
for ensuring quality insights

Efficient coordination is important for productivity

Existing tools offer limited support for such
coordination

Difficulties limit what can be accomplished

Common Elements of the MP
Creation of a modeling project

Successive model versions are created for that
project

Each version is evaluated wrt a scenario set

— Each scenario is motivated by some intention

— This frequently includes a baseline and alternative
scenarios

— Frequently the set of scenarios exhibits some systematic
structure

— Results are analyzed (often in external docs)

There is a frequent need to share access to these
artifacts

Important Gaps in Software Support

Model version control

— Rollback

— Comparison with earlier
versions

Ability to collaborate on

shared artifacts

— Communication of artifacts
across
machine/institutional
boundaries

Reification of structured
scenario collections

* Lack of explicit links &
referential integrity b/t

— Versions & scenarios

— Conceptually linked versions

— Metadata & data
* Motivation for creating

scenario collection & scenario

outputs

e Artifacts & docs on intentions

for producing them

e Definition of scenario &
output

e Output & analysis documents

e Distributed evaluation of

large scenario sets

Why the Gaps Matter

Process transparency

Risk of modeling errors

Client confidence

Speed of learning

Modeling efficiency

Practical limits on project scope

Risk-Driven Testing

Testing: Not Just “Finding Bugs”

B Identifying other quality problems
B Design departures from requirements
B Usability problems (particular power users)

B Should focus on important bugs

B Give immediate feedback on rough quality
B Broad look at entire system

B |dentify usability issues early thru test design

B Using different bug identifications than skills
than developers

M Effective reporting critical

JUnit Tie-Ins

* Tools like Junit can be used to do some testing
against AnyLogic models

* Broad Anylogic testing is made mor challenging by
need to create appropriate test harnesses for testing
extensions of AnyLogic classes

* Suggestion:

— Create alternative experiments for focused testing

— Create alternative startup logic in Main that calls testing-
specific methods

Prototypes

Some suggestions on Prototypes

* Try adding in detail in experimental (throw-
away) prototypes before commit to it

* Prototype two ways of approaching something
— This takes time, but may save more time

Prototypes — Not Just for the Ul!

B Engineering mockups critical in other domains
(e.g. construction)

B |dentify relationships between components
B Identify risks

B |dentify potential engineering savings from
design changes

B Understanding interfaces between
components

B Understanding testing priorities

Prototypes

B Minimal mockups to test (grouped) ideas

B Examine key issues w/o assumption that using this approach
B Risk analysis e.g.

B Prototype most challenging or highest priority questions

B Pick best idea from each affinity group for prototyping
B Prototype each affinity group

B Should be for throw-away use — do not to use code

B Later use should be driven by open issues & decision
making needs

Peer Reviews & Inspections

Reviews: Why?

B More cost-effective than testing
B IBM found 3.5 hours/error for inspection removal vs. 15-
25 hours/error for testing
M Easily pay for themselves (“Quality is Free”)

B More flexible than testing

B Need not wait for executable code
BCan perform at all stages of software engineering process

BMCan be done early in the development of a component

B Can assess communications issues (clarity, style,
commenting, etc.)

Importance of Early Reviews

B Requirements

B Early artifacts have disproportionate impact on
development process

B Marketing documents
B Ul design

Bl Design

B Unit implementation
B Unit testing

Other Benefits of Peer Reviews To...

B Person reviewing the artifact (Clarify
understanding, learn coding tricks, stylistic ideas)
B Person whose artifact is being reviewed
B mproving technique, learn
M Broader culture
B Spread of knowledge about code base

B Spread of knowledge of standards, coding styles
B Code written with other people in mind

Good Points for Peer Reviews

Requirements
specification

Architectural
design

Detailed Ul, and |
database design

Unit test 3

documentation |

Review

\ 4

User documentation, f

. - Integration test
training materials

documentation |

Integration
testing

System
testing

Wiegers,
Peer Reviews in Software

Delivered
product

Guidelines for reviews

B Keep impersonal: Focus on artifact, not people
B Keep review team small (3-7 participants)

B Try to identify -- but not solve -- problems during
review

B Limit meeting to no more than 2 hours

B Require advanced preparation for formal reviews
B Be sensitive to cultural and human components
B Prioritize focus for more major issues

Inspection: Best Practices (Wiegers)

B Plan inspections to address project & inspection
objectives

B [nspect upstream documents first
B Begin inspect documents early in their lives
B Check against source and related documents

B Prepare & inspect at your organization's optimum
rates

B Focus on major defects
B Measure your benefits from inspections

B Emphasize defect prevention and process
iImprovement

B Use serious, quantitative entry and exit conditions

Stages: Planning

B Participants review material on own before meeting
B Moderator assigned at this point
B Author contributes objectives for inspection

B Based on historic data moderator estimates # of
meetings required to do reviews of desired scope

B Moderator

B [nvites participants
B Helps author prepare package of materials for inspections
B Distributes package to participants several days ahead of time

Stages: Overview

B Often a separate meeting

B Author more informally describes perspective
onh product

B Sometimes the inspection package is
distributed during this meeting
B Sometimes skip if

M Participants already familiar with product
B Overview can be described in package

Stages: Preparation

B Most preparation centers around
inspection package
BThe deliverable to be inspected
BStandards/Requirements/Specifications
BTypo list/individual issue log

BM\Work aids to help identify defects
H(e.g. Common defects for this sort of deliverable)

BTest documentation to verify this deliverable

Stages: Meeting 1

M Deliverables

B "inspection summary report” (moderator)
B\Work product appraisal
B Iinformation to communicate to mgmt, etc.

Bl "issues log”
B Indication of what changes are needed to
complete inspection process
B May stop inspection if identified errors are too
serious to make it worth it to continue

Meeting Participant Roles

B Author (shares perspective)
B Moderator: leads process

B Reader: presents pieces of code (and perspectives
on) to inspectors

B Can help cataylze shared understanding by inspectors

B Inspectors: (any participant, including those
assigned to other roles)

B Can critique code
B Can identify possible issues where errors

B Recorder: Documents issues
B Typically 3-4 participants

Stages: Rework

B Author addresses most items in issues log

B Sometimes issue log items get assigned to
others

B Sometimes just log defects in defect control
system to be followed up later

B Result

B Updated work product

B Annotated issue log indicating resolution for each
item

Stages: Followup

B Often with moderator as "verifier" (moderator
decides when process is over)

B Verifier confirms that changes have been
successfully made

B Baselining of changed deliverable into SCCS

Stages: Causal analysis

B This basically uses inspection process to improve
B The development process
B The inspection process

B Focus on process improvement and not on people

B Try to identify root cause of defects

B E.g. Ambiguous explanations in requirements, design
specs, inconsistent naming conventions

