
Best Practices, Process

Nathaniel Osgood

MIT 15.879

May 16, 2012

Recall: Process Suggestions
• Use discovery of bugs & oversights to find

opportunities to improve Q & A and broader modeling
process

• Use peer reviews (& especially inspections) to review
– Preliminary design/Code/Tests

• Use tools for version control & documentation &
referential integrity
– Rigorous versioning
– Document linkages between artifacts

• Keep careful track of experiments
• Strive for ongoing process improvement
• Use focused prototypes where appropriate
• Perform simple tests to verify functionality
• Integrate with others’ work frequently & in small steps

Generate Documentation

Selecting Documentation Output

Example Documentation

Incremental Delivery

Best Advice: Start Simple!

• It is easy to get lost in these models

• Focus on building up the models incrementally, as
insights arise

• Innovate off of simple examples

• Avoid the temptation of the “big bang” project

Some Benefits of Incremental Delivery

• Morale: Get products soon

• Discover problems sooner

• Flexibility to change direction in way that reflects new
knowledge & understanding

• Easier to estimate time required for next deliverable

• Can better handle slower progress or unexpected
schedule limits: At least get some value from dev.

• Get more insight about what to do by tangibly working
with a produced artifact

• Can avoid “gilding the lily” by heading off unnecessary
development

Continuous Integration

Continuous Integration

• Continuous integration involves ongoing
integration of different people’s contributions
to an underlying artifact

– This is in contrast to the traditional “big bang”
approach of integrating all elements at once

• Continuous integration is conceptually
different from but helps support incremental
delivery

Continuous Integration: Advantages

 Cooperation: Greatly reduces integration headaches
 Reduced likelihood of merge conflicts

 Easier, less wasteful to fix if conflict occurs

 Allows bigger teams to function nimbly

 Quicker identification of problematic modifications & bugs

 Helps identify state of project via smoke tests, availability of
executable

 Improved estimation, flexibility for shipping

 Feedback: Reduces need for status reports, polling
 Automated build validation test (BVT) scripts

 Improves team morale

 Helps force fixing bugs before continuing

Managing Process Complexity

Process Complexity: A Barrier to Quality
ABM Modeling

• Medium+ scale ABM projects generate a large # &
diversity & versions of related artefacts

• Careful coordination of these artefacts is important
for ensuring quality insights

• Efficient coordination is important for productivity

• Existing tools offer limited support for such
coordination

• Difficulties limit what can be accomplished

Common Elements of the MP
• Creation of a modeling project

• Successive model versions are created for that
project

• Each version is evaluated wrt a scenario set
– Each scenario is motivated by some intention

– This frequently includes a baseline and alternative
scenarios

– Frequently the set of scenarios exhibits some systematic
structure

– Results are analyzed (often in external docs)

• There is a frequent need to share access to these
artifacts

Department of Computer

Science

Important Gaps in Software Support
• Model version control

– Rollback

– Comparison with earlier
versions

• Ability to collaborate on
shared artifacts

– Communication of artifacts
across
machine/institutional
boundaries

• Reification of structured
scenario collections

• Lack of explicit links &
referential integrity b/t
– Versions & scenarios

– Conceptually linked versions

– Metadata & data
• Motivation for creating

scenario collection & scenario
outputs

• Artifacts & docs on intentions
for producing them

• Definition of scenario &
output

• Output & analysis documents

• Distributed evaluation of
large scenario sets

Department of Computer

Science

Why the Gaps Matter

• Process transparency

• Risk of modeling errors

• Client confidence

• Speed of learning

• Modeling efficiency

• Practical limits on project scope

Department of Computer

Science

Risk-Driven Testing

Testing: Not Just “Finding Bugs”

 Identifying other quality problems
Design departures from requirements

Usability problems (particular power users)

Should focus on important bugs

Give immediate feedback on rough quality
Broad look at entire system

 Identify usability issues early thru test design

Using different bug identifications than skills
than developers

Effective reporting critical

JUnit Tie-ins

• Tools like Junit can be used to do some testing
against AnyLogic models

• Broad AnyLogic testing is made mor challenging by
need to create appropriate test harnesses for testing
extensions of AnyLogic classes

• Suggestion:

– Create alternative experiments for focused testing

– Create alternative startup logic in Main that calls testing-
specific methods

Prototypes

Some suggestions on Prototypes

• Try adding in detail in experimental (throw-
away) prototypes before commit to it

• Prototype two ways of approaching something

– This takes time, but may save more time

Prototypes – Not Just for the UI!

Engineering mockups critical in other domains
(e.g. construction)

 Identify relationships between components
 Identify risks
 Identify potential engineering savings from

design changes
Understanding interfaces between

components
Understanding testing priorities

Prototypes

 Minimal mockups to test (grouped) ideas
 Examine key issues w/o assumption that using this approach

 Risk analysis e.g.
 Prototype most challenging or highest priority questions

 Pick best idea from each affinity group for prototyping

 Prototype each affinity group

 Should be for throw-away use – do not to use code

 Later use should be driven by open issues & decision
making needs

Peer Reviews & Inspections

Reviews: Why?

More cost-effective than testing

IBM found 3.5 hours/error for inspection removal vs. 15-
25 hours/error for testing

Easily pay for themselves (“Quality is Free”)

More flexible than testing

Need not wait for executable code

Can perform at all stages of software engineering process

Can be done early in the development of a component

Can assess communications issues (clarity, style,
commenting, etc.)

Importance of Early Reviews

Requirements

Early artifacts have disproportionate impact on
development process

Marketing documents

UI design

Design

Unit implementation

Unit testing

Other Benefits of Peer Reviews To…

Person reviewing the artifact (Clarify
understanding, learn coding tricks, stylistic ideas)

Person whose artifact is being reviewed
Improving technique, learn

Broader culture
Spread of knowledge about code base

Spread of knowledge of standards, coding styles

Code written with other people in mind

Good Points for Peer Reviews

Wiegers,
Peer Reviews in Software

Guidelines for reviews

 Keep impersonal: Focus on artifact, not people

 Keep review team small (3-7 participants)

 Try to identify -- but not solve -- problems during
review

 Limit meeting to no more than 2 hours

 Require advanced preparation for formal reviews

 Be sensitive to cultural and human components

 Prioritize focus for more major issues

Inspection: Best Practices (Wiegers)
 Plan inspections to address project & inspection

objectives
 Inspect upstream documents first
 Begin inspect documents early in their lives
 Check against source and related documents
 Prepare & inspect at your organization's optimum

rates
 Focus on major defects
 Measure your benefits from inspections
 Emphasize defect prevention and process

improvement
 Use serious, quantitative entry and exit conditions

Stages: Planning

 Participants review material on own before meeting

 Moderator assigned at this point

 Author contributes objectives for inspection

 Based on historic data moderator estimates # of
meetings required to do reviews of desired scope

 Moderator

 Invites participants

 Helps author prepare package of materials for inspections

 Distributes package to participants several days ahead of time

Stages: Overview

Often a separate meeting

Author more informally describes perspective
on product

Sometimes the inspection package is
distributed during this meeting

Sometimes skip if

Participants already familiar with product

Overview can be described in package

Stages: Preparation

Most preparation centers around
inspection package

The deliverable to be inspected

Standards/Requirements/Specifications

Typo list/individual issue log

Work aids to help identify defects

(e.g. Common defects for this sort of deliverable)

Test documentation to verify this deliverable

Stages: Meeting 1

Deliverables

"inspection summary report“ (moderator)

Work product appraisal

Information to communicate to mgmt, etc.

"issues log“

Indication of what changes are needed to
complete inspection process

May stop inspection if identified errors are too
serious to make it worth it to continue

Meeting Participant Roles

 Author (shares perspective)

 Moderator: leads process

 Reader: presents pieces of code (and perspectives
on) to inspectors
 Can help cataylze shared understanding by inspectors

 Inspectors: (any participant, including those
assigned to other roles)
 Can critique code

 Can identify possible issues where errors

 Recorder: Documents issues

 Typically 3-4 participants

Stages: Rework

Author addresses most items in issues log

Sometimes issue log items get assigned to
others

Sometimes just log defects in defect control
system to be followed up later

Result
Updated work product

Annotated issue log indicating resolution for each
item

Stages: Followup

Often with moderator as "verifier" (moderator
decides when process is over)

Verifier confirms that changes have been
successfully made

Baselining of changed deliverable into SCCS

Stages: Causal analysis

 This basically uses inspection process to improve

 The development process

 The inspection process

 Focus on process improvement and not on people

 Try to identify root cause of defects

 E.g. Ambiguous explanations in requirements, design
specs, inconsistent naming conventions

