
Best Practices, Process

Nathaniel Osgood

MIT 15.879

May 16, 2012

Recall: Process Suggestions
• Use discovery of bugs & oversights to find

opportunities to improve Q & A and broader modeling
process

• Use peer reviews (& especially inspections) to review
– Preliminary design/Code/Tests

• Use tools for version control & documentation &
referential integrity
– Rigorous versioning
– Document linkages between artifacts

• Keep careful track of experiments
• Strive for ongoing process improvement
• Use focused prototypes where appropriate
• Perform simple tests to verify functionality
• Integrate with others’ work frequently & in small steps

Generate Documentation

Selecting Documentation Output

Example Documentation

Incremental Delivery

Best Advice: Start Simple!

• It is easy to get lost in these models

• Focus on building up the models incrementally, as
insights arise

• Innovate off of simple examples

• Avoid the temptation of the “big bang” project

Some Benefits of Incremental Delivery

• Morale: Get products soon

• Discover problems sooner

• Flexibility to change direction in way that reflects new
knowledge & understanding

• Easier to estimate time required for next deliverable

• Can better handle slower progress or unexpected
schedule limits: At least get some value from dev.

• Get more insight about what to do by tangibly working
with a produced artifact

• Can avoid “gilding the lily” by heading off unnecessary
development

Continuous Integration

Continuous Integration

• Continuous integration involves ongoing
integration of different people’s contributions
to an underlying artifact

– This is in contrast to the traditional “big bang”
approach of integrating all elements at once

• Continuous integration is conceptually
different from but helps support incremental
delivery

Continuous Integration: Advantages

 Cooperation: Greatly reduces integration headaches
 Reduced likelihood of merge conflicts

 Easier, less wasteful to fix if conflict occurs

 Allows bigger teams to function nimbly

 Quicker identification of problematic modifications & bugs

 Helps identify state of project via smoke tests, availability of
executable

 Improved estimation, flexibility for shipping

 Feedback: Reduces need for status reports, polling
 Automated build validation test (BVT) scripts

 Improves team morale

 Helps force fixing bugs before continuing

Managing Process Complexity

Process Complexity: A Barrier to Quality
ABM Modeling

• Medium+ scale ABM projects generate a large # &
diversity & versions of related artefacts

• Careful coordination of these artefacts is important
for ensuring quality insights

• Efficient coordination is important for productivity

• Existing tools offer limited support for such
coordination

• Difficulties limit what can be accomplished

Common Elements of the MP
• Creation of a modeling project

• Successive model versions are created for that
project

• Each version is evaluated wrt a scenario set
– Each scenario is motivated by some intention

– This frequently includes a baseline and alternative
scenarios

– Frequently the set of scenarios exhibits some systematic
structure

– Results are analyzed (often in external docs)

• There is a frequent need to share access to these
artifacts

Department of Computer

Science

Important Gaps in Software Support
• Model version control

– Rollback

– Comparison with earlier
versions

• Ability to collaborate on
shared artifacts

– Communication of artifacts
across
machine/institutional
boundaries

• Reification of structured
scenario collections

• Lack of explicit links &
referential integrity b/t
– Versions & scenarios

– Conceptually linked versions

– Metadata & data
• Motivation for creating

scenario collection & scenario
outputs

• Artifacts & docs on intentions
for producing them

• Definition of scenario &
output

• Output & analysis documents

• Distributed evaluation of
large scenario sets

Department of Computer

Science

Why the Gaps Matter

• Process transparency

• Risk of modeling errors

• Client confidence

• Speed of learning

• Modeling efficiency

• Practical limits on project scope

Department of Computer

Science

Risk-Driven Testing

Testing: Not Just “Finding Bugs”

 Identifying other quality problems
Design departures from requirements

Usability problems (particular power users)

Should focus on important bugs

Give immediate feedback on rough quality
Broad look at entire system

 Identify usability issues early thru test design

Using different bug identifications than skills
than developers

Effective reporting critical

JUnit Tie-ins

• Tools like Junit can be used to do some testing
against AnyLogic models

• Broad AnyLogic testing is made mor challenging by
need to create appropriate test harnesses for testing
extensions of AnyLogic classes

• Suggestion:

– Create alternative experiments for focused testing

– Create alternative startup logic in Main that calls testing-
specific methods

Prototypes

Some suggestions on Prototypes

• Try adding in detail in experimental (throw-
away) prototypes before commit to it

• Prototype two ways of approaching something

– This takes time, but may save more time

Prototypes – Not Just for the UI!

Engineering mockups critical in other domains
(e.g. construction)

 Identify relationships between components
 Identify risks
 Identify potential engineering savings from

design changes
Understanding interfaces between

components
Understanding testing priorities

Prototypes

 Minimal mockups to test (grouped) ideas
 Examine key issues w/o assumption that using this approach

 Risk analysis e.g.
 Prototype most challenging or highest priority questions

 Pick best idea from each affinity group for prototyping

 Prototype each affinity group

 Should be for throw-away use – do not to use code

 Later use should be driven by open issues & decision
making needs

Peer Reviews & Inspections

Reviews: Why?

More cost-effective than testing

IBM found 3.5 hours/error for inspection removal vs. 15-
25 hours/error for testing

Easily pay for themselves (“Quality is Free”)

More flexible than testing

Need not wait for executable code

Can perform at all stages of software engineering process

Can be done early in the development of a component

Can assess communications issues (clarity, style,
commenting, etc.)

Importance of Early Reviews

Requirements

Early artifacts have disproportionate impact on
development process

Marketing documents

UI design

Design

Unit implementation

Unit testing

Other Benefits of Peer Reviews To…

Person reviewing the artifact (Clarify
understanding, learn coding tricks, stylistic ideas)

Person whose artifact is being reviewed
Improving technique, learn

Broader culture
Spread of knowledge about code base

Spread of knowledge of standards, coding styles

Code written with other people in mind

Good Points for Peer Reviews

Wiegers,
Peer Reviews in Software

Guidelines for reviews

 Keep impersonal: Focus on artifact, not people

 Keep review team small (3-7 participants)

 Try to identify -- but not solve -- problems during
review

 Limit meeting to no more than 2 hours

 Require advanced preparation for formal reviews

 Be sensitive to cultural and human components

 Prioritize focus for more major issues

Inspection: Best Practices (Wiegers)
 Plan inspections to address project & inspection

objectives
 Inspect upstream documents first
 Begin inspect documents early in their lives
 Check against source and related documents
 Prepare & inspect at your organization's optimum

rates
 Focus on major defects
 Measure your benefits from inspections
 Emphasize defect prevention and process

improvement
 Use serious, quantitative entry and exit conditions

Stages: Planning

 Participants review material on own before meeting

 Moderator assigned at this point

 Author contributes objectives for inspection

 Based on historic data moderator estimates # of
meetings required to do reviews of desired scope

 Moderator

 Invites participants

 Helps author prepare package of materials for inspections

 Distributes package to participants several days ahead of time

Stages: Overview

Often a separate meeting

Author more informally describes perspective
on product

Sometimes the inspection package is
distributed during this meeting

Sometimes skip if

Participants already familiar with product

Overview can be described in package

Stages: Preparation

Most preparation centers around
inspection package

The deliverable to be inspected

Standards/Requirements/Specifications

Typo list/individual issue log

Work aids to help identify defects

(e.g. Common defects for this sort of deliverable)

Test documentation to verify this deliverable

Stages: Meeting 1

Deliverables

"inspection summary report“ (moderator)

Work product appraisal

Information to communicate to mgmt, etc.

"issues log“

Indication of what changes are needed to
complete inspection process

May stop inspection if identified errors are too
serious to make it worth it to continue

Meeting Participant Roles

 Author (shares perspective)

 Moderator: leads process

 Reader: presents pieces of code (and perspectives
on) to inspectors
 Can help cataylze shared understanding by inspectors

 Inspectors: (any participant, including those
assigned to other roles)
 Can critique code

 Can identify possible issues where errors

 Recorder: Documents issues

 Typically 3-4 participants

Stages: Rework

Author addresses most items in issues log

Sometimes issue log items get assigned to
others

Sometimes just log defects in defect control
system to be followed up later

Result
Updated work product

Annotated issue log indicating resolution for each
item

Stages: Followup

Often with moderator as "verifier" (moderator
decides when process is over)

Verifier confirms that changes have been
successfully made

Baselining of changed deliverable into SCCS

Stages: Causal analysis

 This basically uses inspection process to improve

 The development process

 The inspection process

 Focus on process improvement and not on people

 Try to identify root cause of defects

 E.g. Ambiguous explanations in requirements, design
specs, inconsistent naming conventions

